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The rapid development of Artificial Intelligence/deep learning technology and its implementation into routine
clinical imaging will cause a major transformation to the practice of radiology. Strategic positioning will ensure
the successful transition of radiologists into their new roles as augmented clinicians. This paper describes an
overall vision on how to achieve a smooth transition through the practice of augmented radiology where
radiologists-in-the-loop ensure the safe implementation of Artificial Intelligence systems.

1. Background

Radiology is in need of a strategy to future-proof the profession. A
diagnostic radiologist is a postgraduate subspecialty-trained medical
doctor who is skilled in interpreting medical images such as Digital
radiographs, CT scans, Ultrasounds, Nuclear Medicine studies and MRIs
and using them to guide management of disease in patients. But re-
cently, experts in Artificial Intelligence (AI) have warned that radi-
ologists may soon be out of a job, one being none other than the grand
master of deep learning himself, Geoffrey Hinton [1].

In some ways, Hinton may be right. Since 1895 when Wilhelm
Roentgen first discovered ‘x-rays’ [2], nothing has come even remotely
close to the disruption potential posed by Artificial Intelligence. It is a
double-edged sword, which, if wielded expertly, will propel radiology
and radiologists well into the next century. On the converse, the margin
for complacency is narrow, and perils abound if radiologists choose to
adopt a ‘wait-and-see’ approach and instead allow pure market forces to
transform the industry.

A middle ground has to be achieved in the tug-of-war between a
specialty whose aims has always been of a noble pursuit of cutting-edge
technology put to good use in achieving the best possible care for pa-
tients, and a multi-billion-dollar imaging industry dominated by behe-
moths of the late, great industrial age, such as General Electric, IBM,
Siemens, Samsung and Phillips [3].

The overall vision for this strategy is for the safe implementation of
Al systems in radiology, where radiologists are mandatory as compo-
nent human authorities, or simply put: ‘radiologist-in-the-loop’ systems.
Professor David Autor described the ‘O-ring principle’ in his paper on
the future of workplace automation: given a situation where a
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collection of tasks need to be done together to successfully accomplish a
main task, if some of the tasks can be automated, the economic value of
the human inputs for the other tasks that cannot be automated will
increase [4,5]. For radiologists, examples of the most important tasks
that cannot be automated would include leading multidisciplinary
meetings and making judgement calls, along with the verification of
reports. With automation, radiologists increase rather than decrease
their value.

Machine learning in the form of image processing, computer vision
and natural language processing are the key Al technologies forming
the pillars of this new Augmented Radiology future. According to
Porter's Generic Strategies model, there are three basic options avail-
able to organizations for gaining a competitive edge. These are: Cost
Leadership, Differentiation and Focus [6]. Strategically, the use of
Porter’s generic strategies to create a competitive advantage hinge upon
the reduction of overall cost of imaging to the patient, by increasing the
productivity of radiologists through the automation of time-consuming,
low-value, mundane and repetitive tasks such as nodule-detection.

This automation also creates differentiation for radiology as a pro-
duct, if it can be harnessed to deliver medical imaging which is more
accurate, more convenient and safer than it is presently. Last, but not
least, Augmented Radiology has the potential to form new niche areas
for growth of the specialty, notably in radiogenomics, report data
mining and research [7-9].

2. The current state of radiology and the need for a strategy

Radiologists are not unfamiliar with Artificial Intelligence, pio-
neering work in medical imaging perception in the 1980s [10]. We are
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domain experts in medical imaging, medical physics and radiation
safety. But in the past 5-10 years, there have been substantial new
innovations in imaging from deep learning methods of image classifi-
cation. Current artificial neural networks have accuracy rates which
surpass those of human radiologists in narrow-based tasks such as no-
dule detection [11,12].

The first step in formulating a strategy is defining our capabilities
and identifying the competitive forces which pose a threat. We face
competition from other medical specialties who spend more time in-
teracting with patients and who may choose to purchase Al technolo-
gies. We also face competition from equipment vendors who manu-
facture imaging devices such as CT scanners.

Our greatest strength lies, counterintuitively, not in our ability to
tap on experience to accurately detect or classify images of disease, but
in our ability to make clinical judgements based on this data, and this is
where we outshine diagnostic algorithms. Judgement is developed not
only from knowledge gained from radiology practice but stems from
many years of undergraduate medical training beforehand. Currently,
radiologists differentiate ourselves by integrating multimodal streams
of data, from electronic health records and discussions with other col-
leagues from different specialties. This is a very strong entry barrier.

Al technology in itself is a fundamental technology which should
not be resisted e.g. by withholding domain expertise from software
developers, on the contrary, our strategic goal should be to further
differentiate ourselves by creating hybrid Radiologists and Al as a form
of collective intelligence.

Apart from thinking of ourselves as a product, we can also position
ourselves as buyers to exert a strategic force upon the market and by
integrating backward. Software is much easier to create than machines,
and deep learning models are already freely available as open source
material online. Instead of buying expensive Al software, we have been
creating our own, in house.

In the future, diversification of radiology into a broader field, uti-
lizing all forms of data, including metadata (e.g. electronic health re-
cords), signals and biometrics to arrive at timely diagnosis around the
clock is a probable strategy. Building an ecosystem to sustain this, to-
gether with other “information specialists” such as Pathologists
[13,14], would create an even greater competitive advantage.

Psychologically, creating “brand identification” by connecting to
our patients via community outreach, fostering awareness of our role in
the healthcare team and by increasing face-to-face interactions would
help to rebrand Radiologists augmented with Al as the new gold-stan-
dard in diagnosis.

3. General use cases, potential impact and implementation
strategy

Broadly, several use cases should be targeted for implementation
within the scope of radiology. They can be divided into task-based
categories:

3.1. Detection and prediction automation

Machine learning (ML) is poised to automate detection of lung no-
dules on CT scans [15] and pneumonia on chest x-rays, with early re-
sults published in non peer-reviewed online archives showing some
promise [16]. The next step is to increase the ability of these ML sys-
tems to predict the behavior of pre-cancerous lesions on CT scans by
regression or modelling, to reduce the number of unnecessary invasive
tests such as biopsy. This has the greatest potential for use in population
screening for cancer, e.g. lung cancer, especially in countries where
there is a shortage of radiologists relative to the populations they serve.

3.2. Intelligence augmentation

A buzzword replacing Al at the recent World Economic Forum was
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IA, or Intelligence Augmentation [17]. Combining Al and radiologists
as a form of hybrid intelligence promises to achieve even higher levels
of accuracy in diagnosis. A working paper by Nagar [18] showed that
groups of human and AI agents working together make more accurate
predictions compared to humans or Al alone. This observation may or
may not hold true for radiological diagnosis and requires scientific
validation and greater scrutiny with peer-reviewed studies. Perhaps
even more crucially, having a radiologist-in-the-loop within these sys-
tems will help to ensure patient safety standards are met and creates
judicial transparency, which allows legal liability to be assigned to the
radiologist component human authority.

3.3. Precision diagnostics and big data

Research in precision medicine will create a need for precision di-
agnostics. As we discover how gene expression is linked to imaging
features of tumours, machine learning will be required to mine the huge
trove of data derived from imaging to assess tumour genetics and be-
haviour, as well as response to treatment [7-9,19-21]. Apart from
cancer, precision diagnostics will conceivably be applied to chronic and
degenerative diseases such as Alzheimer’s and coronary heart disease,
or indeed any disease with genetic and imaging biomarker correlation.

3.4. Radiological decision support systems

The number of imaging studies performed each year has sky-
rocketed over the last two decades, almost doubling every ten years
[22,23]. Machine learning is already used in advanced driver assist
systems on roads, increasing safety and reducing the number of acci-
dents. Similarly, a form of ‘driver-assist’ or decision support can be
applied to diagnostic imaging, which may be particularly valuable for
studies performed after office hours, when radiologists are either un-
available or operating on a skeleton-crew. This reduces information
overload and burnout amongst radiologists, who already interpret one
image every 3-4s [24]. These systems can also aid the rapid detection
of emergency conditions such as stroke in neuroimaging, in which Al
has been used to analyse non-enhanced CT images and MRI images to
automatically detect infarcts, segment infarct volumes and even dif-
ferentiate thrombus from plaque in carotid arteries on CT images
[25,26]

4. Impact upon cost leadership, differentiation and focus

One of the most obvious strategies to drive radiology forward is cost
leadership. The integration of machine learning in imaging diagnosis
has the potential to cut costs for patients and insurance companies by
half [27]. It may cost as little as $1000 USD to install machine learning
enabled chips capable of processing 260 million images per day [28].
Put into perspective, that is more than the sum of all MRI and CT scans
performed in the USA daily. A thousand dollars is the current cost to
payer for a single MRI study in some countries, such as the USA.

Radiologists utilizing AI to diagnose disease, or Augmented
Radiology, could be applied as a differentiation strategy especially if
patients (buyers) perceive this as having value. Apart from creating
value by increasing diagnostic accuracy, this form of hybrid intelligence
may increase patient access to imaging especially in remote areas and
provide round-the-clock services for routine studies, increasing con-
venience.

Finally, projecting far forward into the horizon, finding a niche for
hybrid Augmented Radiologist systems is an important focus strategy
which can synergistically increase the impact of the first two strategies.
As alluded to earlier, there are many research and clinical applications
in radiology which cannot progress without the aid of machine
learning, particularly those which involve data-mining. This is true of
molecular imaging, radiomics, radiogenomics and large population
cancer screening.

www.manaraa.com



C. Liew

5. Defining roles, technical considerations and requirements for
implementation

The individuals involved in implementing these initiatives include
the Chief Information Officer (CIO) of each hospital, radiology leader-
ship in committees and academic bodies such as professional colleges
and societies, as well as individual radiologists.

The CIO’s role is to ensure that these initiatives can be implemented
safely and effectively so that patient safety and privacy is not com-
promised, integration into existing electronic health data systems and
alignment with the rest of the hospital’s policy. If the hospital has a
Chief Data Officer (CDO), their role will be to safeguard the use of data
for validation and training of machine learning systems and other data
governance issues [29].

Radiology committees from professional colleges and societies are
tasked with creating frameworks and guidelines for the entire profes-
sional body. These frameworks define the steps required to advance and
implement Al systems in radiology, as well as a general roadmap for the
future. They may also set standards for the validation of these tech-
nologies. These committees aid government policy makers in drafting
regulations regarding its safe use.

Individual radiologists will have to play a role in actively partici-
pating in the development process and integration of machine learning
into their daily workflow. Most of this will come in the form of creating
validated training datasets for machine learning models. They will also
act as consultants to machine learning companies to develop new use-
cases and perform beta testing for products.

Incorporation of machine learning technology will most likely be-
come the driving force for business growth in healthcare in the future,
and machine learning is aligned to the strategy of increasing the value
of Radiology in healthcare, whilst lowering costs and creating mo-
mentum for progress in medical informatics.

Promising as it may be, current machine learning technology is still
quite a few steps away from successful implementation into radiology.
Most emerging technologies undergo a ‘hype cycle’ and fail to meet
their promised potential during the phase of implementation, for ex-
ample in 2013, augmented reality glasses were introduced but have
since remained in niche usage, far from the mainstream adoption that
was predicted during initial product launch. Considerations in the im-
plementation phase will include integration of systems into current IT
environments, electronic health records, picture archiving and com-
munication system (PACS) and radiology information systems (RIS).

Technological considerations arise mainly in acquisition of hard-
ware and improvements in connectivity bandwidth between hospitals
and departments. Access to secure cloud platforms and data storage will
be essential, if not indispensable. High quality microphones or even
multiple microphones are required for adequate speech recognition
[30,31] and if voice generative NLP is to be applied as a user interface
between the NLP systems and patients, the generated voices would need
to sound more human-like to alleviate patient anxiety and prevent
patient rejection of the technology.

Vendors of platforms delivering Al solutions also face the significant
hurdle of the continuous updating and upgrading of these systems as Al
and imaging technologies improve, as well as keeping up-to-date with
the latest scientific progress in radiology and medicine.

Capital investment for upgrading hospital infrastructure, mainly in
data storage, connectivity bandwidth and computational hardware
would be required. Further on, upskilling of IT support teams to be able
to address helpdesk queries and troubleshoot issues is crucial.

6. Organizational aspects of implementation

The main people in charge of implementing these initiatives would
be the hospital CIO'andyor chief dataofficer; aswell as the department
chief at the line-managerial level. The hospital CIO’s duties would in-
clude ensuring that the systems are able to integrate into existing IT
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infrastructure, and purchasing these systems and updates.

The chief of radiology’s duty would be to ensure radiology staff are
trained adequately to use these systems and that this new software
would not pose a risk to patient safety by auditing error rates before and
after implementation.

The utilization of Al is very much in line with the business strategy
of “value-added radiology” or “Imaging 3.0” as espoused by the
American College of Radiology [32], which is a set of initiatives to
bring radiology to a leadership role in medicine and to catalyze a shift
in radiology culture where care is delivered in a more patient-centered
way: so instead of doing things “to” patients, radiologists will be able to
do things “for” patients. Al will enable radiologists to spend face time
with patients to educate, counsel and guide them in their imaging de-
cisions.

7. Roadmap for the implementation of Al in radiology

A few key areas can be automated with Al in the near future with
machine learning technologies which already exist:

1. Automated image segmentation, lesion detection, measurement,
labelling and comparison with historical images. This technology
has already been debuted on the commercial stage at the recent
Radiological Society of North America (RSNA) annual meeting 2017
in Chicago.

. Generating radiology reports: most radiology reports are written in
prose rather than in lists, necessitating long hours of typing and
dictation on the part of radiologists to craft these reports, which
must be factually and grammatically accurate. Natural language
processing (NLP) and Natural language generation would help re-
duce much of this by either improvement in current technology for
speech recognition or by creating reports from images present on the
scan. This is a much harder task which would involve amalgamation
with image classification machine learning.

. Semantic error detection in reports: NLP would help to ‘understand’
the body of the radiology report, and conceptualize what the radi-
ologist is trying to convey to the clinical team. It would then be able
to act as a second reader and warn the radiologist of semantic errors
before a report is finalized and verified. In a study by Mayo clinic, it
was found that 9.7% of speech recognition generated radiological
reports contained errors, 1.9% of these were considered material
[33].

. Data mining for research: a rich treasure trove of data resides in
historical radiological reports which are stored in electronic health
record databases across the globe. This data could be mined with
NLP to create searchable databases classified by types of disease
entities, concepts, keywords and sentiments. Each datapoint could
then be combined in multiple permutations to answer research hy-
potheses, automating medical research which is painstakingly slow
and prone to data input errors.

. Business Intelligence for radiologists: machine learning has the po-
tential to vastly improve business intelligence systems that allow
real-time dash-boarding and alert systems, workflow analysis and
improvement, outcomes measures and performance assessment.
This in turn increases the throughput and efficacy of radiology
practices and presumably improves patient satisfaction through
shorter waiting times.

Several other potential use-cases for radiology require further ad-
vancement in Al technology from what is available today, and may be
reserved for longer timelines in implementation. These include auto-
mated population screening and automated patient triage systems in
emergency departments.

Other AI and radiology combinatorial fields such as radiomics and
radiogenomics are in their nascent stage of development and sit on
timelines which stretch into the more distant future. In addition to
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greater technological hurdles to achieving these initiatives, these also
have greater potential for job displacement (but not necessarily job
replacement), and necessitate more detailed planning and ethical dis-
cussion before implementation.

8. Special considerations, job displacement and risk mitigation

Healthcare is one of the more lucrative business opportunities
within most economies worldwide, perhaps even more so in developing
nations with growing middle classes who can afford self-funded
healthcare. Not surprisingly, medical imaging computing is the most
published subject in the scientific literature amongst uses of deep
learning in healthcare [34]. What this means is that it is likely, although
not yet confirmed, that radiology will be the first medical specialty to
be disrupted in the field.

For all that has been said about AI augmenting radiologists and
making the task of diagnosis more efficient and accurate, we should
also be prepared for the likely scenario where the productivity gains
from employing these solutions would lead to reduction in manpower
requirements due to less time spent on traditional radiological tasks
such as nodule detection and measurement.

The way to mitigate these risks would be to create new jobs or roles
within the healthcare sphere to employ people displaced by these
technologies. One good example of a replacement job would be medical
data scientist, which could be taken up by radiology residents who are
open to an early-career switch or role expansion. Societal norms dictate
that some form of social and financial support or reimbursement should
be provided to reduce the friction of transitioning into these new jobs,
which could come in the form of upskilling cash rebates, educational
bursaries and scholarships. These transitions should ideally take place
as early in a doctor's career as possible to minimize personal and psy-
chological impact upon the individual.

Most radiologists would agree that a major concern is the definition
of tasks which should be automated and those which should remain
radiologist-only tasks, with the overarching principle of safeguarding
patient safety and data privacy. The hypothesis that Human and Al
hybrid intelligence outperforms human or Al standalone intelligence
has held true in early medical imaging computing research, at least for
the time being. A recent press release from a startup Al company found
that their radiology decision support system could achieve greater ac-
curacy for bone fracture detection than radiologists alone and many
times better than traditional computer vision approaches [35].

Regulatory policy would play a critical role in determining the
outcome of this division of labor. It is expected that both scientific
evidence and policies will align to mandate human-in-the-loop systems
where radiologists provide the final verification of diagnosis, either by
way of Al decision support or standalone human judgement relying on
Al for lesion detection, labelling and feature classification (the former
more likely in emergency settings with a need for expedited results).
Either way, the common thread is that human judgement will remain a
radiologist’s domain, with varying degrees of Al automation of re-
petitive and mundane tasks.

9. Safety, privacy, moral and ethical concerns

These remain a large shadow looming over the implementation of
Al in healthcare. Notwithstanding these concerns, recent signals from
the US FDA portend that governments are keen to support Al tech-
nology adoption in the healthcare domain [36]. Borrowing from the
Asilomar Al principles [37], the key ethical concerns for imaging Al are:

1. Safety: this is a key imperative for medical Al systems which would
be inextricably involved in safeguarding the health of sick in-
dividuals at their most vulnerable state. Medical ethics imposes
stringent ethical standards upon physicians to protect patient safety
by the principle of non-maleficence, dictating that any doctor must
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‘first, do no harm’. The primacy of this principle translates into a
requirement that any Al system must be validated to be safe, ac-
curate and infallible before it can be used on patients.

. Failure and Judicial Transparency: If an Al system were to fail or
cause harm, it should be possible to determine why, and if the
system were involved in judgement-making, there should be ways to
explain satisfactorily the process involved in arriving at the decision
and this should be auditable by a human-in-the-loop (a component
human authority), during the process of arriving at the decision.
This enables legal liability to be assigned to a human authority, and
for the radiologist to assume responsibility for the action.

. Privacy: most Al systems would have access to protected health
information (PHI) either on-site or in cloud-based storage and
therefore pose risks to patient privacy. A way to mitigate these
concerns would be through law reform to insert complementary
amendments into existing PHI legislation. Al system designers
should ensure that algorithms be granted access only to relevant PHI
(need-to-know basis). Collection of PHI data by third-party AI
companies should be audited by relevant authorities to protect data
usage and to ensure compliance within the framework of patient
consent.

10. Global radiology impact and global RADIOLOGISTS’ response

The impact of Al is beginning to send ripples throughout the in-
ternational radiology community, dominating industry and academic
headlines, as well as becoming sellout ‘standing-room only’ sessions at
international radiology meetings. The impact in reading rooms has been
more muted, with relatively few departments in academic centers and
research institutes being involved in AI research and user acceptance
testing. Notably, many efforts have focused on industry and regulation
but more is required in educating the young generation of digital na-
tives who will become our next generation of radiologists or Data sci-
entists. Recently at the European Congress of Radiology (ECR) 2018
meeting in Vienna the subject of leveraging diversity and unity as one
body of radiologists was highlighted as a strategic strength. Not all
radiology communities have formed workgroups to generate roadmaps
for the guided progress of Al in radiology, but for countries and regions
which have done so, e.g. USA, UK, Europe, and in Asia, Singapore,
frameworks for regulatory policy, quality assurance and forming part-
nerships with industry are recurring themes. Perhaps forming global
partnerships for a united radiological body or set of principles would
help galvanise the fraternity further in preparation for what lies ahead.

11. Conclusion

According to Porter's Generic Strategies model, Cost Leadership,
Differentiation and Focus can be used to create a competitive ad-
vantage. The roadmap for the future of Al augmented Radiology is
guided by the direction provided by these strategies: reduction of
overall cost of imaging to the patient/payer by increasing the pro-
ductivity of radiologists through the automation of time-consuming and
low cognitive value tasks and by differentiating Augmented Radiology
as the cornerstone of precision medicine which delivers imaging results
which are safer, more accurate and more conveniently than at present.
Augmented Radiology also has the potential to foster new niche areas
for growth, notably in radiomics, radiogenomics, data mining and re-
search. Finally, Augmented Radiology increases the value of radi-
ologists, economically, as well as socially: to our patients, and to the
multidisciplinary healthcare team.
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